Random walks in the quarter-plane with zero drift: an explicit criterion for the finiteness of the associated group
نویسندگان
چکیده
In many recent studies on random walks with small jumps in the quarter plane, it has been noticed that the so-called group of the walk governs the behavior of a number of quantities, in particular through its order. In this paper, when the drift of the random walk is equal to 0, we provide an effective criterion giving the order of this group. More generally, we also show that in all cases where the genus of the algebraic curve defined by the kernel is 0, the group is infinite, except precisely for the zero drift case, where finiteness is quite possible. Key-words: Automorphism, generating function, genus, piecewise homogeneous random walk, quarter-plane, Weierstrass elliptic function. ∗ INRIA Paris-Rocquencourt, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex, France. Email: [email protected] † Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Deutschland. Email: [email protected] in ria -0 05 72 27 6, v er si on 1 1 M ar 2 01 1 Marches aléatoires dans le quart de plan avec dérive nulle: un critère explicite de finitude pour le groupe associé Résumé : Dans plusieurs études récentes sur les marches aléatoires dans le quart de plan avec des sauts vers les huit plus proches voisins, il apparat que le comportement de certaines quantits d’intérêt est directement lié au groupe de la marche, notamment à la finitude de son ordre. Pour les marches dérive nulle, nous donnons une formule pour l’ordre de ce groupe, en fonction explicite des probabilits de saut. De façon générale, lorsque le genre de la courbe algébrique définie par le noyau est 0, le groupe est toujours infini, sauf précisément lorsque le saut moyen est nul, auquel cas la finitude est parfaitement possible. Mots-clés : Automorphisme, fonction génératrice, genre, marche aléatoire homogène par morceaux, quart de plan, fonction elliptique de Weierstrass. in ria -0 05 72 27 6, v er si on 1 1 M ar 2 01 1 An explicit criterion for the finiteness of the group in the genus 0 case 3
منابع مشابه
Random Walks in the Quarter Plane, Harmonic Functions and Conformal Mappings
We propose here a new approach for finding harmonic functions of killed random walks with small steps in the quarter plane. It is based on solving a certain functional equation that satisfies the generating function of the values taken by the harmonic functions. As a first application of our results, we obtain a simple expression for the harmonic function that governs the asymptotic tail distri...
متن کاملRandom walks in the quarter plane, discrete harmonic functions and conformal mappings
We propose a new approach for finding discrete harmonic functions in the quarter plane with Dirichlet conditions. It is based on solving functional equations that are satisfied by the generating functions of the values taken by the harmonic functions. As a first application of our results, we obtain a simple expression for the harmonic function that governs the asymptotic tail distribution of t...
متن کاملGreen functions and Martin compactification for killed random walks related to SU(3)
We consider the random walks killed at the boundary of the quarter plane, with homogeneous non-zero jump probabilities to the eight nearest neighbors and drift zero in the interior, and which admit a positive harmonic polynomial of degree three. For these processes, we find the asymptotic of the Green functions along all infinite paths of states, and from this we deduce that the Martin compacti...
متن کاملRandom Walks in the Quarter Plane Absorbed at the Boundary : Exact and Asymptotic
Nearest neighbor random walks in the quarter plane that are absorbed when reaching the boundary are studied. The cases of positive and zero drift are considered. Absorption probabilities at a given time and at a given site are made explicit. The following asymptotics for these random walks starting from a given point (n0, m0) are computed : that of probabilities of being absorbed at a given sit...
متن کاملCounting walks in a quadrant: a unified approach via boundary value problems
The aim of this article is to introduce a unified method to obtain explicit integral representations of the trivariate generating function counting the walks with small steps which are confined to a quarter plane. For many models, this yields for the first time an explicit expression of the counting generating function. Moreover, the nature of the integrand of the integral formulations is shown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011